Abstract
A carbon-regulated Si substrate engineering has been adopted to reduce the RF loss of GaN-based HEMT buffer stacks. By implanting the substrate with high-dose carbon, undersaturation of Si self-interstitials is formed, and the self-interstitial-assisted aluminum diffusion into the Si substrate during the growth can be significantly suppressed. Consequently, the formation of parasitic conductive channel is suppressed, and the RF loss of the buffer stacks can be reduced. By combining the substrate engineering with low-temperature growth, the RF loss of the buffer stacks is reduced to as low as 0.13 dB/mm at 10 GHz. In addition, the crystal quality of the buffer stacks grown on the regulated substrates does not degrade. This work shows a great potential for fabrication of high-quality and low-loss GaN-on-Si RF devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.