Abstract
We have investigated the dynamics of Josephson vortices interacting with electromagnetic waves in Bi 2Sr 2CaCu 2O 8+ y intrinsic Josephson junction (IJJ) stacks by means of millimeter wave irradiation and numerical simulations based on coupled sine-Gordon equations while taking into account a sinusoidal form of the periodic pinning potential. The numerical simulation results for the influence of the electromagnetic waves on the flux-flow properties reveal that the periodic pinning potential induces the in-phase motion of Josephson vortices over the junctions. In order to prove from another viewpoint, we investigate RF impedance of IJJ in flux-flow state in this study. A remarkable negative real part region appears at 1st harmonic step, it means that the IJJ in flux-flow state acts as an oscillator at the negative real part region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.