Abstract
Cellular network positioning is a mandatory requirement for localizing emergency callers, such as E911 in North America. Although smartphones are normally equipped with GPS modules, there are still a large number of users with cell phones only as basic devices, and GPS could be ineffective in urban canyon environments. To this end, the RF fingerprints based positioning mechanism is incorporated into LTE architecture by 3GPP, where the major challenge is to collect geo-tagged RF fingerprints in vast areas. This paper proposes to utilize the subspace identification approach for large-scale RF fingerprints prediction. We formulate the problem into the problem of finding the optimal subspace over Stiefel manifold, and redesign the Stiefel-manifold optimization method with fast convergence rate. Moreover, we propose a sliding window mechanism for the practical large-scale fingerprints prediction scenario, where recorded fingerprints are unevenly distributed in the vast area. Combining the two proposed mechanisms enables an efficient method of large-scale fingerprints prediction in the city level. Further, we validate our theoretical analysis and proposed mechanisms by conducting experiments with real mobile data, which shows that the resulted localization accuracy and reliability with our predicted fingerprints exceed the requirement of E911.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.