Abstract
A compact interdigital H-mode drift-tube linac (IH-DTL) with the alternating-phase-focusing (APF) method, working at 325 MHz was designed for an injector of a proton medical accelerator. When fed in with a proper RF (radio frequency) power, the DTL cavity could establish the corresponding electromagnetic field to accelerate the “proton bunches” from an input energy of 3 MeV to an output energy of 7 MeV successfully, without any additional radial focusing elements. The gap-voltage distribution which was obtained from the CST® Microwave Studio software simulations of the axial electric field was compared with that from the beam dynamics, and the errors met the requirements within ± 5%. In this paper, the RF design procedure and key results of the APF IH-DTL, which include the main RF characteristics of the cavity, frequency sensitivities of the tuners, and coupling factor of the RF power input coupler are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.