Abstract

This invited paper addresses various “Microwave Photonics” techniques developed for biomedical applications. The first application is using RF photonics technique for calibration of ultrasound transducers operating at high-frequencies without spatial field averaging compromise. In particular a broadband fiber-optic based hydrophone probe is reported for measurements of acoustic fields at the frequencies up to 100 MHz. In another application of microwave photonics, tissue spectroscopy is performed using multi-wavelength absorption and scattering in near infrared. A high speed and high power laser driver is designed with a flat frequency response using RC speed up circuits in high power lasers. Phantom experiments are performed to extract optical parameters. Multi-frequency data fitting algorithm is performed to extract optical parameters of the phantom model simulating a breast tissue. The optical parameters (μa, μs') are extracted with a very good accuracy. These low cost techniques are replacement for other expensive sub-centimeter spatial resolution medical imaging methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.