Abstract

A study of shock-buffet onset and instability mechanism via Reynolds-averaged Navier―Stokes simulations on several airfoils is presented. The numerical setup and the Spalart―AUmaras turbulence closure are validated based on wind-tunnel data from NACA 0012 and RA16SC1 airfoils. The paper presents simulations of the flow past three • airfoils: the subsonic NACA 0012, the supercritical RA16SC1, and the thin, transonic/supersonic NACA 64A204, at pre- and postbuffet conditions, and within a cycle of developed shock buffet. The shock-buffet cycle is found to be »■• similar in nature for all airfoils, originating in unstable interaction of the shock and the separation bubble. Simulation results support the notion that buffet onset is not related to the bursting of the separation bubble behind the shock. Shock-buffet categorizing is posited as a transonic prestall instability phenomenon that depends on the shock strength and location. Shock-buffet onset conditions occur when the shock position is behind and sufficiently close to the upper-surface maximum curvature location. Additionally, it is suggested that offset conditions are when the shock is at an upstream location and the flow aft of it is fully separated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call