Abstract
An experimental study on the Reynolds stress tensor was conducted in the three-dimensional flow in the plane turbulent wall jet induced by an isolated streamwise vortex generated by the half-delta wing mounted on the wall. Oscillation of the angle of attack of the wing induced a periodic perturbation in the strength of the streamwise vortex. Analysis by triple velocity decomposition and phase averaging shows that the oscillation induces periodic variations in the strength, radius, and position of the streamwise vortex center. The effect of periodic perturbation manifests itself in the magnitude of the Reynolds stress components \(\overline{w^{2}}\) and \(\overline{vw}.\) Simulations prove that the periodic variations in the strength, radius, and position of the vortex center can generate an apparent shear stress, denoted herein as \(\overline{\tilde{V}\tilde{W}}.\)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.