Abstract

Wall-pressure fluctuations are a practically robust input for real-time control systems aimed at modifying wall-bounded turbulence. The scaling behaviour of the wall-pressure–velocity coupling requires investigation to properly design a controller with such input data so that it can actuate upon the desired turbulent structures. A comprehensive database from direct numerical simulations (DNS) of turbulent channel flow is used for this purpose, spanning a Reynolds-number range $Re_\tau \approx 550\unicode{x2013}5200$ . Spectral analysis reveals that the streamwise velocity is most strongly coupled to the linear term of the wall pressure, at a Reynolds-number invariant distance-from-the-wall scaling of $\lambda _x/y \approx 14$ (and $\lambda _x/y \approx 8$ for the wall-normal velocity). When extending the analysis to both homogeneous directions in $x$ and $y$ , the peak coherence is centred at $\lambda _x/\lambda _z \approx 2$ and $\lambda _x/\lambda _z \approx 1$ for $p_w$ and $u$ , and $p_w$ and $v$ , respectively. A stronger coherence is retrieved when the quadratic term of the wall pressure is concerned, but there is only little evidence for a wall-attached-eddy type of scaling. An experimental dataset comprising simultaneous measurements of wall pressure and velocity complements the DNS-based findings at one value of $Re_\tau \approx 2$ k, with ample evidence that the DNS-inferred correlations can be replicated with experimental pressure data subject to significant levels of (acoustic) facility noise. It is furthermore shown that velocity-state estimations can be achieved with good accuracy by including both the linear and quadratic terms of the wall pressure. An accuracy of up to 72 % in the binary state of the streamwise velocity fluctuations in the logarithmic region is achieved; this corresponds to a correlation coefficient of $\approx$ 0.6. This thus demonstrates that wall-pressure sensing for velocity-state estimation – e.g. for use in real-time control of wall-bounded turbulence – has merit in terms of its realization at a range of Reynolds numbers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call