Abstract

When Reynolds number Re (≡ U∞d/ν, where U∞ is the free stream velocity, d is the cylinder diameter, and ν is the kinematic viscosity of fluid) varies from 10 3 to 10 4 , there is a large change in the turbulent near-wake dynamics (e.g., the base pressure coefficient, fluctuating lift coefficient, and vortex formation length) of a circular cylinder, which has previously been connected to the generation of small-scale Kelvin-Helmholtz vortices. This work aims to investigate how this Re variation affects the three components of the vorticity vector and to provide a relatively complete set of three-dimensional vorticity data. All three components of vorticity were simultaneously measured in the intermediate region of a turbulent circular-cylinder wake using a multiwire vorticity probe

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.