Abstract

The streamwise turbulence intensity and wall-shear stress fluctuations of zero pressure gradient (ZPG) turbulent boundary layers are investigated for seven Reynolds numbers based on the momentum thickness in the range of 1009 ⩽ Reθ ⩽ 4070 by particle-image velocimetry (PIV) and micro-particle tracking velocimetry (µ-PTV) at a spatial resolution up to 0.06–0.23 wall units such that the viscous sublayer is well resolved. The statistics evidence good agreement with direct numerical simulations (DNS) and experimental results from the literature. The experimental results show the streamwise turbulence intensity and wall-shear stress fluctuation to grow at increasing Reynolds numbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.