Abstract

A systematic study of the effect of the Reynolds number on the fluid dynamics and turbulence statistics of pulsed jets impinging on a flat surface is presented. It has been suggested that the influence of the Reynolds number may be somewhat different for a jet subjected to pulsation when compared to an equivalent steady jet. A comparative study of both steady and pulsating jets is presented for a Reynolds number range from to . All the other factors that affect the flowfield are kept constant, which are , , and . It was found that for the range of the Reynolds numbers tested, pulsation results in a shortening of the jet core, the centerline axial velocity component declines more rapidly, and higher values of the radial velocity component for are observed. As the Reynolds number increases, the jet spreads more rapidly, the turbulent kinetic energy and nondimensional turbulent fluctuations decrease, and the flowfield near the impinging surface changes drastically, which is evident with the development of a turbulent momentum exchange interaction away from the wall for .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.