Abstract

Lessons learned from comparisons between ground-based tests and flight measurements for the high-angle-of-attack programs on the F-18 High Alpha Research Vehicle (HARV), the X-29 forward-swept wing aircraft, and the X-31 enhanced fighter maneuverability aircraft are presented. On all three vehicles, Reynolds number effects were evident on the forebodies at high angles of attack. The correlation between flight and wind tunnel forebody pressure distributions for the F-18 HARV were improved by using twin longitudinal grit strips on the forebody of the wind-tunnel model. Pressure distributions obtained on the X-29 wind-tunnel model at flight Reynolds numbers showed excellent correlation with the flight data up to alpha = 50 deg. Above (alpha = 50 deg. the pressure distributions for both flight and wind tunnel became asymmetric and showed poorer agreement, possibly because of the different surface finish of the model and aircraft. The detrimental effect of a very sharp nose apex was demonstrated on the X-31 aircraft. Grit strips on the forebody of the X-31 reduced the randomness but increased the magnitude of the asymmetry. Nose strakes were required to reduce the forebody yawing moment asymmetries and the grit strips on the flight test noseboom improved the aircraft handling qualities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.