Abstract
Low-order moments of the increments δu andδv where u and v are the axial and radial velocity fluctuations respectively, have been obtained using single and X-hot wires mainly on the axis of a fully developed pipe flow for different values of the Taylor microscale Reynolds numberR λ. The mean energy dissipation rate〉e〈 was inferred from the uspectrum after the latter was corrected for the spatial resolution of the hot-wire probes. The corrected Kolmogorov-normalized second-order structure functions show a continuous evolution withR λ. In particular, the scaling exponentζ v , corresponding to the v structure function, continues to increase with R λ in contrast to the nearly unchanged value of ζ u . The Kolmogorov constant for δu shows a smaller rate of increase with R λ than that forδv. The level of agreement with local isotropy is examined in the context of the competing influences ofR λ and the mean shear. There is close but not perfect agreement between the present results on the pipe axis and those on the centreline of a fully developed channel flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.