Abstract
The paper presents a novel Reynolds-averaged turbulence model for flows of power-law fluid. The model uses the elliptic relaxation approach to capture the near-wall turbulence anisotropy. The turbulence model for Newtonians fluids is modified by introducing closed approximations of correlations between velocity and viscosity fluctuations. The approximation for non-Newtonian extra stress is derived with the assumption of smallness of molecular viscosity fluctuations. A closed model for the averaged molecular viscosity is derived which takes into account its nonlinear dependence on the shear rate. Validation of the model against the direct numerical simulation (DNS) data for power-law fluids flows in the pipe demonstrates that new model is able to predict the main features of the non-Newtonian turbulence. Mean velocity, turbulent energy and averaged molecular viscosity distributions agree well with DNS data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.