Abstract

It is currently impossible to get complete de-novo assembly of segmentally duplicated genome regions using genome-wide short-read datasets. Here, we devise a new computational method called Regional Extension of Assemblies Using Linked-Reads (REXTAL) for improved region-specific assembly of segmental duplication-containing DNA, leveraging genomic short-read datasets generated from large DNA molecules partitioned and barcoded using the "Gel Bead in Emulsion" (GEM) microfluidic method (Zheng et al., 2016). We show that using REXTAL, it is possible to extend assembly of single-copy diploid DNA into adjacent, otherwise inaccessible subtelomere segmental duplication regions and other subtelomeric gap regions. Moreover, REXTAL is computationally more efficient for the directed assembly of such regions from multiple genomes (e.g., for the comparison of structural variation) than genome-wide assembly approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.