Abstract
Any symmetric polynomial f∈R[X1, …, Xn] has a unique representation f = p(σ1, …, σn) with p∈R[X1, …, Xn] in the elementary symmetric polynomials σ1, …, σn. This paper investigates higher order symmetric polynomials; these are symmetric polynomials with a representation p, which is also symmetric. We present rewriting techniques for higher order symmetric polynomials and exact degree bounds for the generators of the corresponding invariant rings. Moreover, we point out how algorithms and degree bounds for these polynomials are related to Pascals triangle, Fibonacci numbers, Chebyshev polynomials, and cardinalities of finite distributive lattices of semi-ideals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Applicable Algebra in Engineering, Communication and Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.