Abstract

Increase of safety in security documents by using anticounterfeiting inks based on fluorochromic and photochromic compounds has attracted a great deal of attention in the recent years. Herein, we developed novel functionalized stimuli-responsive latex particles containing spiropyran (1 wt %) by semicontinuous emulsifier-free emulsion polymerization, which are usable as anticounterfeiting inks for marking on security documents and also photopatterning on cellulosic papers. The size and morphology of the latex particles were characterized by scanning electron microscopy and dynamic light scattering and their functionality was characterized by Fourier-transform infrared spectroscopy. All the stimuli-responsive latexes are composed of spherical particles with different hydroxyl, epoxy, and carboxylic acid functional groups, and the size of the particles varies in the range of 400-900 nm. Additionally, the latex particles undergo a remarkable light-induced size variation (aggregation-disaggregation) upon UV illumination (365 nm), depending on the functional group type, as a result of π-π stacking interactions and also electrostatic attractions between the different particles. The photochromic behavior, kinetics of the SP ⇌ MC isomerization, photoswitchability, and photofatigue-resistant characteristics of the prepared latexes were extensively investigated. The results display that the photochromic behavior and SP ⇌ MC isomerization can significantly be influenced by the polar interactions between the functional groups and MC molecules. As a novel application, the prepared stimuli-responsive latexes were used as anticounterfeiting inks for writing on cellulosic paper and also security marking on several monies, where the written phrase displayed red fluorescence emission and coloration under and after UV illumination (365 nm), respectively. Additionally, the latexes were sprayed on cellulosic papers to prepare stimuli-responsive papers for investigation of their photopatterning ability under UV irradiation and different masking. The presence of functional groups and large particle sizes are the main effective factors for stabilization of the latex particles on cellulosic papers. This is the first report on application of functionalized stimuli-responsive latex particles containing spiropyran as anticounterfeiting inks for security marking and photopatterning on cellulosic papers, directly and without using further additives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call