Abstract

Since the onset of plate tectonics, continents have evolved through a balance between crustal growth, reworking, and recycling at convergent plate margins. The term “reworking” involves the re-insertion of crustal material into pre-existing crustal volumes, while crustal growth and recycling respectively represent gains from and losses to the mantle. Reworking that occurs in the mantle wedge (“source” contamination from slab material) or within the upper plate (“path” contamination), will have contrasting effects on crustal evolution. However, due to limited access to deep crustal and mantle rocks, quantifying source vs. path contamination remains challenging. Based on the 4-dimensional record of the fossil (Ordovician) Famatinian continental arc (Argentina), we demonstrate that source contamination plays a dominant role in imprinting mafic to granitic rocks with crustal oxygen-hafnium (O-Hf) isotopic compositions. We argue that source contamination at convergent plate margins significantly increased the diversity of O-Hf isotopic signatures of continents over geologic time. Our interpretation implies that crustal evolution models attributing this isotopic diversity dominantly to intra-crustal reworking may be over-simplistic and may underestimate continental growth in the last 2.5 billion years.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.