Abstract

Succinate was found extensive applications in the food additives, pharmaceutical, and biopolymers industries. However, the succinate biosynthesis in E. coli required IPTG, lacked NADH, and produced high yields only under anaerobic conditions, unsuitable for cell growth. To overcome these limitations, the glyoxylate shunt and reductive TCA pathway were simultaneously enhanced to produce succinate in both aerobic and anaerobic conditions and achieve a high cell growth meanwhile. On this basis, NADH availability and sugars uptake were increased. Furthermore, an oxygen-dependent promoter was used to dynamically regulate the expression level of key genes of reductive TCA pathway to avoid the usage of IPTG. The final strain E. coli Mgls7-32 could produce succinate from corn stover hydrolysate without an inducer, achieving a titer of 72.8 g/L in 5 L bioreactor (1.2 mol/mol of total sugars). Those findings will aid in the industrial production of succinate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.