Abstract

Peatland degradation impairs soil functions such as carbon storage and the existence of biodiversity hotspots. Therefore, and in view of the ongoing climate change, an efficient method of evaluating peatland hydrology and the success of restoration efforts is needed. To understand the role of microbial groups in biogeochemical cycling, gaseous loss and isotopic fractionation that lead to specific isotopic depth patterns (δ13C, δ15N), we integrated previously published stable isotope data with a membrane fatty acid (mFA) analysis related to various microbial groups that are known to be common in peatlands. We performed two sampling campaigns to verify the observed stable isotope depth trends in nutrient-poor peatlands in Northern Europe. Cores were taken from adjacent drained (or rewetted) and undrained sites. Fungal-derived mFA abundance was highest in the uppermost part of the drained layer. We found increasing bacterial-derived mFA concentrations with depth peaking in the middle of the drained layers, which correlates with a δ15N peak of bulk material. The results support our hypothesis that changing peatland hydrology induce a shift in microbial community and metabolism processes and is therefore also imprinted in stable isotope values. Under waterlogged conditions overall levels of microbial-derived mFAs were generally low. Drained layers showed simultaneous changes in microbial abundance and composition and depth trends in stable isotope bulk values. Bacteria, particularly acidobacteria, can be expected to dominate increased denitrification with low oxygen saturation accompanied by increased δ15N bulk values in the remaining substrate. Interestingly, cores from recent rewetted peatlands show no depth trend of δ15N in the layers grown under rewetting conditions; this is congruent with relatively low concentrations of microbial-derived mFAs. Hence, we conclude that stable isotopes, especially δ15N values, reflect changing microbial metabolic processes, which differ between drained and undrained - and especially also for recent rewetted–peatlands. As today stable isotope measurements are routine measurements, these findings enable us to get cost- and time efficient reliable information of drainage and restoration success.

Highlights

  • A unique biodiversity, slow rates of decomposition and the storage of significant quantities of carbon characterize wetland soils; this is especially true for nutrient-poor peatlands (Moore and Basiliko, 2006)

  • Contrary to the continually decreasing trend in depth of the fungal-derived membrane fatty acid (mFA) under drained conditions, the bacterialderived mFA concentration is highest in the middle of the mesotelm and peaks parallel to the δ15N turning point

  • As the highest quantity of acidobacterial-derived mFAs is found in the mesotelm (Figures 2, 3), we found that the increasing metabolism rate of acidobacteria could be linked to the increasing δ13C values (Figure 2)

Read more

Summary

Introduction

A unique biodiversity, slow rates of decomposition and the storage of significant quantities of carbon characterize wetland soils; this is especially true for nutrient-poor peatlands (Moore and Basiliko, 2006). The protection of biodiversity and successful peatland restoration could save 1.91 (0.31–3.38) gigatons (Gt) of CO2-equivalent greenhouse gas emissions (Leifeld and Menichetti, 2018). 6% of the greenhouse effect is contributed by N2O Schulze et al (2009), which is released by degraded peatlands due to impaired soil functioning (Palmer and Horn, 2015). Microbial communities and their major role in biochemical cycling of carbon and nitrogen in soil are well documented, but little is known of the microbial community and its function in peatlands (Elliott et al, 2015). More reliable information about peatland degradation and restoration success is needed

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call