Abstract

Normal-hearing (NH) listeners rely on two binaural cues, the interaural time (ITD) and level difference (ILD), for azimuthal sound localization. Cochlear-implant (CI) listeners, however, rely almost entirely on ILDs. One reason is that present-day clinical CI stimulation strategies do not convey salient ITD cues. But even when presenting ITDs under optimal conditions using a research interface, ITD sensitivity is lower in CI compared to NH listeners. Since it has recently been shown that NH listeners change their ITD/ILD weighting when only one of the cues is consistent with visual information, such reweighting might add to CI listeners’ low perceptual contribution of ITDs, given their daily exposure to reliable ILDs but unreliable ITDs. Six bilateral CI listeners completed a multi-day lateralization training visually reinforcing ITDs, flanked by a pre- and post-measurement of ITD/ILD weights without visual reinforcement. Using direct electric stimulation, we presented 100- and 300-pps pulse trains at a single interaurally place-matched electrode pair, conveying ITDs and ILDs in various spatially consistent and inconsistent combinations. The listeners’ task was to lateralize the stimuli in a virtual environment. Additionally, ITD and ILD thresholds were measured before and after training. For 100-pps stimuli, the lateralization training increased the contribution of ITDs slightly, but significantly. Thresholds were neither affected by the training nor correlated with weights. For 300-pps stimuli, ITD weights were lower and ITD thresholds larger, but there was no effect of training. On average across test sessions, adding azimuth-dependent ITDs to stimuli containing ILDs increased the extent of lateralization for both 100- and 300-pps stimuli. The results suggest that low-rate ITD cues, robustly encoded with future CI systems, may be better exploitable for sound localization after increasing their perceptual weight via training.

Highlights

  • Binaural hearing allows listeners to localize sound sources and facilitates understanding speech in noise

  • NH listeners rely on two binaural cues for azimuthal sound localization, the interaural time difference (ITD) and the interaural level difference (ILD)

  • We investigated a mechanism potentially contributing to the previous finding that sound localization with clinical CI systems is largely based on ILDs (Grantham et al 2007; Seeber and Fastl 2008) and the extent of laterality evoked by ITDs is largely reduced in CI users compared to NH listeners, even when presented as well-controlled pulse-ITDs to the implanted electrodes via a research interface (e.g., Anderson et al 2019; Laback et al 2015)

Read more

Summary

Introduction

Binaural hearing allows listeners to localize sound sources and facilitates understanding speech in noise. Even when using both implants, CI listeners generally perform worse than normal-hearing (NH) listeners in the above-mentioned tasks (Kan and Litovsky 2015). NH listeners rely on two binaural cues for azimuthal sound localization (i.e., in the horizontal dimension, referred to as lateralization), the interaural time difference (ITD) and the interaural level difference (ILD). ITD cues are conveyed via the carrier signal (i.e., the temporal fine structure) at low frequencies and via the temporal envelope at high carrier frequencies. ILDs, on the other hand, are physically negligible at low frequencies but provide strong lateralization cues at high frequencies (e.g., Macpherson and Middlebrooks 2002). NH listeners weight ITD and ILD cues mainly based on the

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call