Abstract
We study an evolutionary model of a public good game with rewards played on a network. Giving rewards to contributors transforms the game but gives rise to a second-order dilemma. By allowing for coevolution of strategies and network structure, the evolutionary dynamics operate on both structure and strategy. Players learn with whom to interact and how to act and can overcome the second-order dilemma. More specifically, the network represents social distance which changes as players interact. Through the change in social distance, players learn with whom to interact, which we model using reinforcement dynamics. We find that, for certain parameter constellations, a social institution, prescribing prosocial behavior and thus solving the second-order dilemma, can emerge from a population of selfish players. Due to the dynamic structure of the network, the institution has an endogenous punishment mechanism ensuring that defectors will be excluded from the benefits of the institution and the public good will be supplied efficiently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.