Abstract

The human prefrontal cortex (PFC) subserves cognitive control, that is, the ability to form behavioral strategies that coordinate actions and thoughts in relation to internal goals. Cognitive control involves the medial and lateral PFC but we still poorly understand how these regions guide strategy selection according to expected rewards. We addressed this issue using neuroimaging, computational modeling and model-based analyses of information flows between medial and lateral PFC. We show here that the (dorsal) medial PFC encodes and conveys to lateral PFC reward expectations driving strategy selection, while strategy selection originates in lateral PFC and propagates backward to medial PFC. This functional loop through lateral PFC enables strategy selection to further comply with learned rules encoded in lateral PFC rather than with reward expectations conveyed from medial PFC. Thus, the medial and lateral PFC are functionally coupled in cognitive control for integrating expected rewards and learned rules in strategy selection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.