Abstract
Reward models have become an important method for specifying performability models for many types of systems. Many methods have been proposed for solving reward models, but no method has proven itself to be applicable over all system classes and sizes. Furthermore, specification of reward models has usually been done at the state level, which can be extremely cumbersome for realistic models. We describe a method to specify reward models as stochastic activity networks (SANs) with impulse and rate rewards, and a method by which to solve these models via uniformization. The method is an extension of one proposed by de Souza e Silva and Gail in which impulse and rate rewards are specified at the SAN level, and solved in a single model. Furthermore, we propose a new technique for discarding paths in the uniformized process whose contribution to the reward variable is minimal, which greatly reduces the time and space required for a solution. A bound is calculated on the error introduced by this discarding, and its effectiveness is illustrated through the study of the performability and availability of a degradable multi-processor system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.