Abstract

The nucleus accumbens (NAc) is critical in mediating reward seeking and is also involved in negative emotion processing, but the cellular and circuitry mechanisms underlying such opposing behaviors remain elusive. Here, using the recently developed AAV1-mediated anterograde transsynaptic tagging technique in mice, we show that NAc neurons receiving basolateral amygdala inputs (NAcBLA) promote positive reinforcement via disinhibiting dopamine neurons in the ventral tegmental area (VTA). In contrast, NAc neurons receiving paraventricular thalamic inputs (NAcPVT) innervate GABAergic neurons in the lateral hypothalamus (LH) and mediate aversion. Silencing the synaptic output of NAcBLA neurons impairs reward seeking behavior, while silencing of NAcPVT or NAcPVT→LH pathway abolishes aversive symptoms of opiate withdrawal. Our results elucidate the afferent-specific circuit architecture of the NAc in controlling reward and aversion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call