Abstract

We propose a new mechanism of spontaneous gauge symmetry breaking in the world-volume theory of revolving D-branes around a fixed point of orbifolds. In this paper, we consider a simple model of the T6/Z3 orbifold on which we put D3-branes, D7-branes and their anti-branes. The configuration breaks supersymmetry, but the R-R tadpole cancellation conditions are satisfied. A set of three D3-branes at an orbifold fixed point can separate from the point, but when they move perpendicular to the anti-D7-branes put on the fixed point, they are forced to be pulled back due to an attractive interaction between the D3 and anti-D7 branes. In order to stabilize the separation of the D3-branes at nonzero distance, we consider revolution of the D3-branes around the fixed point. Then the gauge symmetry on D3-branes is spontaneously broken, and the rank of the gauge group is reduced. The distance can be set at our will by appropriately choosing the angular momentum of the revolving D3-branes, which should be determined by the initial condition of the cosmological evolution of D-brane configurations. The distance corresponds to the vacuum expectation values of brane moduli fields in the world-volume theory and, if it is written as M/Ms^2 in terms of the string scale Ms, the scale of gauge symmetry breaking is given by M. Angular momentum conservation of revolving D3-branes assures the stability of the scale M against Ms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call