Abstract

The dominance of the major crops that feed humans and their livestock arose from agricultural revolutions that increased productivity and adapted plants to large-scale farming practices. Two hormone systems that universally control flowering and plant architecture, florigen and gibberellin, were the source of multiple revolutions that modified reproductive transitions and proportional growth among plant parts. Although step changes based on serendipitous mutations in these hormone systems laid the foundation, genetic and agronomic tuning were required for broad agricultural benefits. We propose that generating targeted genetic variation in core components of both systems would elicit a wider range of phenotypic variation. Incorporating this enhanced diversity into breeding programs of conventional and underutilized crops could help to meet the future needs of the human diet and promote sustainable agriculture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call