Abstract

This paper presents a groundbreaking approach to enhance the performance of a vehicle cruise control system—a crucial aspect of road safety. The work offers two key contributions. Firstly, a state-of-the-art metaheuristic algorithm is proposed by augmenting the performance of the weighted mean of vectors (INFO) algorithm using pattern search and elite opposition-based learning mechanisms. The resulting boosted INFO (b-INFO) algorithm surpasses the original INFO, marine predators, and gravitational search algorithms in terms of performance on benchmark functions, including unimodal, multimodal, and fixed-dimensional multimodal functions. Secondly, a novel proportional, fractional order integral, derivative plus double derivative with filter (P{I}^{lambda }DN{D}^{2}{N}^{2}) controller is proposed as a more efficient control structure for vehicle cruise control systems. An objective function is utilized to determine the optimal values for the controller parameters, and the proposed method's performance is compared against a range of recent approaches. Results demonstrate that the b-INFO algorithm-based P{I}^{lambda }DN{D}^{2}{N}^{2} controller is the most efficient and superior method for controlling a vehicle cruise control system. Moreover, this work represents the first report of a P{I}^{lambda }DN{D}^{2}{N}^{2} controller’s implementation for vehicle cruise control systems, underscoring the novelty and significance of this research. The proposed method's exceptional ability is further confirmed by comparisons with the genetic algorithm, ant lion optimizer, atom search optimizer, arithmetic optimization algorithm, slime mold algorithm, Lévy flight distribution algorithm, manta ray foraging optimization, and hunger games search-based proportional–integral–derivative (PID), along with Harris hawks optimization-based PID and fractional order PID controllers. This work marks a remarkable milestone toward safer and more efficient vehicle cruise control systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.