Abstract

In the current agricultural landscape, a significant portion of tomato plants suffer from leaf diseases, posing a major challenge to manual detection due to the task's extensive scope. Existing detection algorithms struggle to balance speed with accuracy, especially when identifying small-scale leaf diseases across diverse settings. Addressing this need, this study presents FCHF-DETR (Faster-Cascaded-attention-High-feature-fusion-Focaler Detection-Transformer), an innovative, high-precision, and lightweight detection algorithm based on RT-DETR-R18 (Real-Time-Detection-Transformer-ResNet18). The algorithm was developed using a carefully curated dataset of 3147 RGB images, showcasing tomato leaf diseases across a range of scenes and resolutions. FasterNet replaces ResNet18 in the algorithm's backbone network, aimed at reducing the model's size and improving memory efficiency. Additionally, replacing the conventional AIFI (Attention-based Intra-scale Feature Interaction) module with Cascaded Group Attention and the original CCFM (CNN-based Cross-scale Feature-fusion Module) module with HSFPN (High-Level Screening-feature Fusion Pyramid Networks) in the Efficient Hybrid Encoder significantly enhanced detection accuracy without greatly affecting efficiency. To tackle the challenge of identifying challenging samples, the Focaler-CIoU loss function was incorporated, refining the model's performance throughout the dataset. Empirical results show that FCHF-DETR achieved 96.4% Precision, 96.7% Recall, 89.1% mAP (Mean Average Precision) 50-95 and 97.2% mAP50 on the test set, with a reduction of 9.2G in FLOPs (floating point of operations) and 3.6M in parameters. These findings clearly demonstrate that the proposed method improves detection accuracy and reduces computational complexity, addressing the dual challenges of precision and efficiency in tomato leaf disease detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.