Abstract

Malaria is a significant global health issue, responsible for the highest rates of morbidity and mortality globally. This paper introduces a very effective and precise convolutional neural network (CNN) method that employs advanced deep learning techniques to automate the detection of malaria in images of red blood cells (RBC). Furthermore, we present an emerging and efficient deep learning method for differentiating between cells infected with malaria and those that are not infected. To thoroughly evaluate the efficiency of our approach, we do a meticulous assessment that involves comparing different deep learning models, such as ResNet-50, MobileNet-v2, and Inception-v3, within the domain of malaria detection. Additionally, we conduct a thorough comparison of our proposed approach with current automated methods for malaria identification. An examination of the most current techniques reveals differences in performance metrics, such as accuracy, specificity, sensitivity, and F1 score, for diagnosing malaria. Moreover, compared to existing models for malaria detection, our method is the most successful, achieving an accurate score of 1.00 in all statistical matrices, confirming its promise as a highly efficient tool for automating malaria detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.