Abstract

In the current study, self-nano-emulsifying (SNE) physically cross-linked polyethylene glycol (PEG) organogel (SNE-POG) as an innovative hybrid system was fabricated for topical delivery of water-insoluble and unstable bioactive compound curcumin (CUR). Response surface methodology (RSM) based on Optimal Design was utilized to evaluate the formulation factors. Solid fiber mechanism with homogenization was used to prepare formulations. Pharmaceutical evaluation including rheological and texture analysis, their mathematical correlations besides physical and chemical stability experiments, DSC study, in vitro release, skin permeation behavior, and clinical evaluation were carried out to characterize and optimize the SNE-OGs. PEG 4000 as the main organogelator, Poloxamer 188 (Plx188) and Ethyl Cellulose (EC) as co-gelator/nanoemulsifier agents, and PEG 400 and glycerin as solvent/co-emulsifier agents could generate SNE-POGs in PS range of 356 to 1410 nm that indicated organic base percentage and PEG 4000 were the most detrimental variables. The optimized OG maintained CUR stable in room and accelerated temperatures and could release CUR sustainably up to 72 h achieving high flux of CUR through guinea pig skin. A double-blind clinical trial confirmed that pain scores, stiffness, and difficulty with physical function were remarkably diminished at the end of 8 weeks compared to the placebo (71.68% vs. 7.03%, 62.40% vs. 21.44%, and 45.54% vs. 8.66%, respectively) indicating very high efficiency of system for treating knee osteoarthritis. SNE-POGs show great potential as a new topical drug delivery system for water-insoluble and unstable drugs like CUR that could offer a safe and effective alternative to conventional topical drug delivery system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call