Abstract

AbstractA solvent‐free sulfur‐bridge‐eosin‐Y (SBE‐Y) polymeric framework photocatalyst was prepared for the first time through an in situ thermal polymerization route using elemental sulfur (S8) as a bridge. The addition of a sulfur bridge to the polymeric framework structure resulted in an allowance of the harvesting range of eosin‐Y (E‐Y) for solar light. This shows that a wider range of solar light can be used by the bridge material's photocatalytic reactions. In this context, supercharged solar spectrum: enhancing light absorption and hole oxidation with sulfur bridges. This suggests that the excited electrons and holes through solar light can contribute to oxidation–reduction reactions more potently. As a result, the photocatalyst‐enzyme attached artificial photosynthesis system developed using SBE‐Y as a photocatalyst performs exceptionally well, resulting in high 1,4‐NADH regeneration (86.81%), followed by its utilization in the exclusive production of formic acid (210.01 μmol) from CO2 and synthesis of fine chemicals with 99.9% conversion yields. The creation of more effective photocatalytic materials for environmental clean‐up and other applications that depend on the solar light‐driven absorption spectrum of inorganic and organic molecules could be one of the practical ramifications of this research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.