Abstract

Glutathione reductase (GR) plays a key role in maintaining thiol groups in the lens, and its activity decreases with aging and cataract formation. Mammalian thioredoxin (Trx) and thioredoxin reductase (TrxR), or the Trx/TrxR system, participates in the repair of oxidatively damaged lens proteins and enzymes. α -Crystallin, a molecular chaperone, prevents the aggregation of partially denatured proteins under various stress conditions. Thioltransferase (TTase, or glutaredoxin) can maintain the homeostasis of lens protein thiols thus protecting against oxidative stress. We investigated whether the Trx/TrxR system can revive GR activity in both the cortex and nucleus of human cataract and clear aged lenses and whether α -crystallin and TTase can help this effect. The GR activity in the cortex and nucleus of the cataractous lenses was significantly lower than that of the aged clear lenses. The highest activity in the cortex was observed in the clear aged lenses. The combination of Trx and TrxR revived the activity of GR from both the cortex and nucleus of aged clear lenses. However, in cataract lenses (grade II and grade IV), there was a statistically significant recovery of GR activity in the cortex, but not in the nucleus. No recovery was observed when Trx or TrxR were used separately. α -Crystallin successfully revived GR activity in the cortex of cataract grade II lenses, but not in the nucleus. The combination of α -crystallin and Trx/TrxR gave a further increase of activity. TTase alone revived some of the GR activity but together with the Trx/TrxR system gave no statistically significant enhancement of GR activity. These results indicate that both disulfide bond formation and protein unfolding are responsible for GR inactivation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.