Abstract

During the 2019 and 2020 seasons, nutrient-deficient virgin sandy soil was examined along with the investigation of the response of Phaseolus vulgaris plants to soil application with biocompost in integration with chemical fertilizers applied to soil and plants. Four treatments (100% of the recommended NPK fertilizer dose (control), 75% NPK applied to soil + 25% foliar spray, 75% NPK applied to soil + 25% foliar spray + leguminous compost (CL), and 75% NPK applied to soil + 25% foliar spray + CL containing Bacillus subtilis (biocompost; CLB)) were applied in a randomized complete block design. The 75% NPK applied to soil + 25% foliar spray + CLB was the best treatment, which exceeded other treatments in improving soil fertility and plant performance. It noticeably improved soil physicochemical properties, including available nutrients, activities of various soil enzymes (cellulase, invertase, urease, and catalase), soil cation exchange capacity, organic carbon content, and pH, as well as plant growth and productivity, and plant physiobiochemistry, including nutrients and water contents, and various antioxidant activities. The results of the 2020 season significantly outperformed those of the 2019 season, indicating the positive effects of biofertilizers as a strategy to combine soil supplementation with NPK fertilizers and allocate a portion of NPK fertilizers for foliar spraying of plants in nutrient-deficient sandy soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.