Abstract
This study was to test our hypothesis that flexor tendon reconstruction with an allograft revitalized with bone marrow stromal cells (BMSCs) and synovialized with carbodiimide derivatized autologous synovial fluid (cd-SYN) would result in better digit functional restoration than the conventional allograft tendon. A total of 32 flexor digital profundus tendons from the second and fifth digit of 16 dogs were created a repair failure model first. Then, failed-repaired tendons were reconstructed with either a revitalized-synovialized allograft tendon or a clinical standard autograft tendon (control group). The allograft tendon was seeded with autologous BMSCs in multiple slits and the graft surface was coated with cd-SYN. A 6 weeks after tendon reconstruction, the digits were harvested and evaluated for digit function, adhesion status, tendon gliding resistance, attachment strength, cell viability, and histologic factors. The allograft group had significantly improved digit function compared with the control group through decreased work of flexion, increased digit range of motion under 2-Newton force, and less adhesion score (p < .05). However, the distal attachment-site strength and stiffness in the allograft tendon were significantly weaker than the autografts (p < .05). No significant difference was found for gliding resistance. Histologically, allograft tendons coated with allograft had smoother surfaces and showed tendon-to-bone and tendon-to-tendon incorporation. Viable BMSCs were found in the tendon slits 6 weeks after the graft. In conclusion, cellular lubricant-based modification of allograft tendons improved digit function and reduced the adhesions compared with autograft for flexor tendon reconstruction. However, improvement of graft-to-host tendon healing is still challenging. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of orthopaedic research : official publication of the Orthopaedic Research Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.