Abstract
To understand the function of networks we have to identify the structure of their interactions, but also interaction timing, as compromised timing of interactions may disrupt network function. We demonstrate how both questions can be addressed using a modified estimator of transfer entropy. Transfer entropy is an implementation of Wiener's principle of observational causality based on information theory, and detects arbitrary linear and non-linear interactions. Using a modified estimator that uses delayed states of the driving system and independently optimized delayed states of the receiving system, we show that transfer entropy values peak if the delay of the state of the driving system equals the true interaction delay. In addition, we show how reconstructed delays from a bivariate transfer entropy analysis of a network can be used to label spurious interactions arising from cascade effects and apply this approach to local field potential (LFP) and magnetoencephalography (MEG) data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.