Abstract

This paper reformulates the Lévy–Kintchine formula to make it suitable for modeling the stochastic time-changing effects of Lévy processes. Using the variance gamma (VG) process as an example, it illustrates the dynamic properties of a Lévy process and revisits the earlier work of Geman (2002). It also shows how the model can be calibrated to price options under a Lévy VG process, and calibrates the model on recent S&P500 index options data. It then compares the pricing performance of fast Fourier transform (FFT) and fractional Fourier transform (FRFT) approaches to model calibration and investigates the trade-off between calibration performance and required calculation time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.