Abstract

2,4-Dichlorophenol (2,4-DCP) widely exists in many industrial wastewaters and is considered a priority pollutant due to its high toxicity. In this work, we proposed a UV/sulfite process without aeration for high-efficiency dechlorination and enhanced mineralization. The UV/sulfite system significantly improved the removal of 2,4-DCP (93.33 % in 60 min) and dechlorination rate (85.13 % in 60 min) compared with UV alone and sulfite alone, and the synergistic factor was 6.59. The UV/sulfite system without aeration improved the mineralization rate (49.80 %) compared with the nitrogen aeration system. UV/sulfite was a reduction-oxidation coupled process and was more suitable for neutral and alkaline conditions. Reducing species (hydrated electrons and H•) made 2,4-DCP dechlorinate to form dechlorination products such as p-chlorophenol (4-CP), o-chlorophenol (2-CP), and phenol, which were further mineralized by oxidized species (SO4•-). UV/sulfite remained highly efficient in the presence of coexisting ions and under different water quality conditions. This process was also suitable for removing a wide range of chlorinated organic compounds. The UV/sulfite process without aeration can achieve high dechlorination and enhanced mineralization with simple operation and low cost (1.78 $·m−3 order−1), which has a broad and cost-effective application prospect in removing refractory halogenated organic pollutants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call