Abstract

The two-layer hypothesis of tree-grass coexistence posits that trees and grasses differ in rooting depth, with grasses exploiting soil moisture in shallow layers while trees have exclusive access to deep water. The lack of clear differences in maximum rooting depth between these two functional groups, however, has caused this model to fall out of favor. The alternative model, the demographic bottleneck hypothesis, suggests that trees and grasses occupy overlapping rooting niches, and that stochastic events such as fires and droughts result in episodic tree mortality at various life stages, thus preventing trees from otherwise displacing grasses, at least in mesic savannas. Two potential problems with this view are: 1) we lack data on functional rooting profiles in trees and grasses, and these profiles are not necessarily reflected by differences in maximum or physical rooting depth, and 2) subtle, difficult-to-detect differences in rooting profiles between the two functional groups may be sufficient to result in coexistence in many situations. To tackle this question, I coupled a plant uptake model with a soil moisture dynamics model to explore the environmental conditions under which functional rooting profiles with equal rooting depth but different depth distributions (i.e., shapes) can coexist when competing for water. I show that, as long as rainfall inputs are stochastic, coexistence based on rooting differences is viable under a wide range of conditions, even when these differences are subtle. The results also indicate that coexistence mechanisms based on rooting niche differentiation are more viable under some climatic and edaphic conditions than others. This suggests that the two-layer model is both viable and stochastic in nature, and that a full understanding of tree-grass coexistence and dynamics may require incorporating fine-scale rooting differences between these functional groups and realistic stochastic climate drivers into future models.

Highlights

  • The distribution of most terrestrial biomes can be derived from climatic variables [1], but savannas challenge this model, often occurring under conditions that can theoretically support forests [2]

  • The results suggest that the original premise of the Walter two-layer model, i.e., that niche differentiation can explain coexistence, is valid

  • Conclusions and broader implications A simple vertically-explicit model suggests that the relative importance of tree-grass competition may vary systematically along environmental gradients, and this may be an important insight for developing a predictive understanding of tree-grass dynamics under a wide range of conditions

Read more

Summary

Introduction

The distribution of most terrestrial biomes can be derived from climatic variables [1], but savannas challenge this model, often occurring under conditions that can theoretically support forests [2]. Global and continental-scale studies suggest that water availability is the ultimate factor determining the upper boundary of tree cover over a wide precipitation range [2,12,21], and that, below a certain threshold of mean annual precipitation, resource availability is the driving force behind treegrass coexistence. It still has not been satisfactorily demonstrated that niche partitioning mechanisms are incapable of explaining the savanna state, even under quite mesic conditions. In other words, are aboveground drivers such as fire and herbivory necessary for tree-grass coexistence, or are they modifiers acting upon a system that is made possible by resources alone? Second, how pervasive is niche partitioning likely to be as a viable mechanism of coexistence across broad edaphic and climatic gradients?

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call