Abstract

Small atomic clusters with exotic stability, bonding, aromaticity, and reactivity properties can be made use of for various purposes. In this work, we revisit the trapping of noble gas atoms (He-Kr) by the triatomic H3+ and Li3+ species by using some analytical tools from density functional theory, conceptual density functional theory, and the information-theoretic approach. Our results showcase that though similar in geometry, H3+ and Li3+ exhibit markedly different behavior in bonding, aromaticity, and reactivity properties after the addition of noble gas atoms. Moreover, the exchange-correlation interaction and steric effect are key energy components in stabilizing the clusters. This study also finds that the origin of the molecular stability of these species is due to the spatial delocalization of the electron density distribution. Our work provides an additional arsenal towards a better understanding of small atomic clusters capturing noble gases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call