Abstract

The thermodynamics of BTZ black holes are revisited with a variable gravitational constant. A new pair of conjugated thermodynamic variables are introduced, including the central charge C and chemical potential μ. The first law of thermodynamics and the Euler relationship, instead of the Smarr relationship in the extended phase space formalism, are matched perfectly in the proposed formalism. Compatible with the standard extensive thermodynamics of an ordinary system, the black hole mass is verified to be a first order homogeneous function of the related extensive variables, and restores the role of internal energy. In addition, the heat capacity has also resulted in a first order homogeneous function using this formalism, and asymptotic behavior is demonstrated at the high temperature limit. The non-negativity of the heat capacity indicates that the rotating and charged BTZ black holes are thermodynamically stable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call