Abstract

The $D$-dimensional Smorodinsky-Winternitz system, proposed some years ago by Evans, is re-examined from an algebraic viewpoint. It is shown to possess a potential algebra, as well as a dynamical potential one, in addition to its known symmetry and dynamical algebras. The first two are obtained in hyperspherical coordinates by introducing $D$ auxiliary continuous variables and by reducing a 2D-dimensional harmonic oscillator Hamiltonian. The su(2D) symmetry and ${\rm w}(2D) \oplus_s {\rm sp}(4D,{\mathbb R})$ dynamical algebras of this Hamiltonian are then transformed into the searched for potential and dynamical potential algebras of the Smorodinsky-Winternitz system. The action of generators on wavefunctions is given in explicit form for D=2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.