Abstract

Natural or artificially manufactured peptides attract scientific interest worldwide owing to their wide array of pharmaceutical and biological activities. X-ray structural studies are used to provide a precise extraction of information, which can be used to enable a better understanding of the function and physicochemical characteristics of peptides. Although it is vulnerable to disassociation, one of the most vital human peptide hormones, somatostatin, plays a regulatory role in the endocrine system as well as in the release of numerous secondary hormones. This study reports the successful crystallization and complete structural model of octreotide, a stable octapeptide analogue of somatostatin. Common obstacles in crystallographic studies arising from the intrinsic difficulties of obtaining a suitable single-crystal specimen were efficiently overcome as polycrystalline material was employed for synchrotron and laboratory X-ray powder diffraction (XPD) measurements. Data collection and preliminary analysis led to the identification of unit-cell symmetry [orthorhombic, P212121, a = 18.5453 (15), b = 30.1766 (25), c = 39.798 (4) Å], a process which was later followed by complete structure characterization and refinement, underlying the efficacy of the suggested (XPD) approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.