Abstract

Natural or artificially manufactured peptides attract scientific interest worldwide owing to their wide array of pharmaceutical and biological activities. X-ray structural studies are used to provide a precise extraction of information, which can be used to enable a better understanding of the function and physicochemical characteristics of peptides. Although it is vulnerable to disassociation, one of the most vital human peptide hormones, somatostatin, plays a regulatory role in the endocrine system as well as in the release of numerous secondary hormones. This study reports the successful crystallization and complete structural model of octreotide, a stable octapeptide analogue of somatostatin. Common obstacles in crystallographic studies arising from the intrinsic difficulties of obtaining a suitable single-crystal specimen were efficiently overcome as polycrystalline material was employed for synchrotron and laboratory X-ray powder diffraction (XPD) measurements. Data collection and preliminary analysis led to the identification of unit-cell symmetry [orthorhombic, P212121, a = 18.5453 (15), b = 30.1766 (25), c = 39.798 (4) Å], a process which was later followed by complete structure characterization and refinement, underlying the efficacy of the suggested (XPD) approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call