Abstract
In the context of loop quantum gravity and spinfoam models, the simplicity constraints are essential in that they allow one to write general relativity as a constrained topological BF theory. In this work, we apply the recently developed U(N) framework for SU(2) intertwiners to the issue of imposing the simplicity constraints to spin network states. More particularly, we focus on solving on individual intertwiners in the 4D Euclidean theory. We review the standard way of solving the simplicity constraints using coherent intertwiners and we explain how these fit within the U(N) framework. Then we show how these constraints can be written as a closed algebra and we propose a set of U(N) coherent states that solves all the simplicity constraints weakly for an arbitrary Immirzi parameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.