Abstract

Graphite, commonly including artificial graphite and natural graphite (NG), possesses a relatively high theoretical capacity of 372mAhg-1 and appropriate lithiation/de-lithiation potential, and has been extensively used as the anode of lithium-ion batteries (LIBs). With the requirements of reducing CO2 emission to achieve carbon neutral, the market share of NG anode will continue to grow due to its excellent processability and low production energy consumption. NG, which is abundant in China, can be divided into flake graphite (FG) and microcrystalline graphite (MG). In the past 30 years, many researchers have focused on developing modified NG and its derivatives with superior electrochemical performance, promoting their wide applications in LIBs. Here, a comprehensive overview of the origin, roles, and research progress of NG-based materials in ongoing LIBs is provided, including their structure, properties, electrochemical performance, modification methods, derivatives, composites, and applications, especially the strategies to improve their high-rate and low-temperature charging performance. Prospects regarding the development orientation as well as future applications of NG-based materials are also considered, which will provide significant guidance for the current and future research of high-energy-density LIBs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.