Abstract

The electrochemistry of hydrous iridium oxide films (HIROF) is revisited. Cyclic voltammograms of HIROFs display two reversible redox couples commonly assigned to the Ir(III)/Ir(IV) and Ir(IV)/Ir(V) transitions, respectively. However, compared to the first, the second redox couple has significantly less charge associated to it. This effect is interpreted as partial oxidation of Ir(IV) as limited by nearest neighbor repulsion of resulting Ir(V) sites. Thus, the redox process is divided into two steps: one preceding and one overlapping the oxygen evolution reaction (OER). Here, the ``super-nernstian'' pH dependence of the redox processes in the HIROF is used to expose how pH controls the overpotential for oxygen evolution, as evidenced by the complementary increased formation of Ir(V) oxide. A recently formulated binuclear mechanism for the OER is employed to illustrate how hydrogen bonding may suppress the OER, thus implicitly favoring Ir(V) oxide formation above the thermodynamic onset potential for the OER at low pH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.