Abstract

The longstanding problem of interpretation of satellite structures in core level photoemission spectra of metallic systems with a low density of conduction electrons is addressed using the specific example of Sb-doped SnO$_2$. Comparison of {\it ab initio} many-body calculations with experimental hard X-ray photoemission spectra of the Sn 4$d$ states shows that strong satellites are produced by coupling of the Sn core hole to the plasma oscillations of the free electrons introduced by doping. Within the same theoretical framework, spectral changes of the valence band spectra are also related to dynamical screening effects. These results demonstrate that, for the interpretation of electron correlation features in the core level photoelectron spectra of such narrow-band materials, going beyond the homogeneous electron gas electron-plasmon coupling model is essential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.