Abstract

The Starobinsky model is a natural inflationary scenario in which inflation arises due to quantum effects of the massless matter fields. A modified version of the Starobinsky (MSt) model takes the masses of matter fields and the cosmological constant, Λ, into account. The equations of motion become much more complicated; however, approximate analytic and numeric solutions are possible. In the MSt model, inflation starts due to the supersymmetric (SUSY) particle content of the underlying theory, and the transition to the radiation-dominated epoch occurs due to the relatively heavy s-particles decoupling. For Λ = 0 the inflationary solution is stable until the last stage, just before decoupling. In the present paper we generalize this result for Λ ≠ 0, since Λ should be nonvanishing at the SUSY scale. We also take into account the radiative corrections to Λ. The main result is that the inflationary solution of the MSt model remains robust and stable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call