Abstract

The dependence of the acidolysis reaction of a C6-C3 dimeric nonphenolic β-O-4 type lignin model compound, 2-(2-methoxyphenoxy)-1-(3,4-dimethoxyphenyl) propane-1,3-diol (veratrylglycerol-β-guaiacyl ether, VG), on the type of acid applied was examined using three different acids [0.2 mol/l HCl, 0.2 mol/l HBr, and 0.1 mol/l (0.2 N) H2SO4 in 82% aqueous 1,4-dioxane at 85°C]. In the HCl system, the major reaction modes of the corresponding benzyl cation-type intermediate (BC), which is produced by protonation of the α-hydroxyl group of VG and successive release of the water molecule, are the abstraction of the β-proton and hydride transfer from the β-to the α-position. The liberation of formaldehyde from the γ-hydroxymethyl group of BC is the predominant reaction mode in the H2SO4 system. Apparently, an unknown reaction mode or modes is operative in the early stage of the HBr system that causes rapid disappearance of VG accompanied by the quantitative formation of 2-methoxyphenol without affording the common counterpart of a Hibbert’s ketone, 1-hydroxy-3-(3,4-dimethoxyphenyl) propan-2-one. The reaction mode in the HBr system changes with the progress of the reaction and is the same as that in the HCl system after the early stage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call