Abstract

A general periodicity condition is presented by analyzing the relative motion between two spacecraft performing formation flight in Keplerian elliptic orbits. The Tschauner–Hempel equation is used to describe the relative motion, and the general periodicity condition is derived through a state transition matrix with a true anomaly as a free variable. The general periodicity condition is also derived by using the energy matching condition, and the resulting periodic conditions by two approaches are compared to each other. Moreover, the zero offset condition is presented to locate the leader spacecraft at the center of the formation geometry. Then, the periodic relative motion in the elliptic reference orbit is expressed using the periodicity condition and the zero offset condition. Numerical simulations demonstrate the periodic relative motion in the elliptic reference orbit, and the results show that the general periodicity condition guarantees the bounded periodic relative motion in arbitrary elliptic orbits, and the zero offset condition makes the formation center coincide with the leader spacecraft.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call